Canadian Museum of History

Environmental Report 2024–2025

1. Introduction

1.1. Museum

The Canadian Museum of History is a Crown corporation overseeing two national museums in the National Capital Region: the Canadian Museum of History, located in Gatineau, Quebec, and the Canadian War Museum, located in Ottawa, Ontario. Through exhibitions, collections, programs, events and online initiatives, these museums share the diverse stories of people, communities and cultures that have shaped Canada's history.

The Corporation also administers Digital Museums Canada, a national program supporting the creation of online content by smaller institutions. Additionally, it maintains the Virtual Museum of New France, an extensive digital resource exploring early French history in Canada.

Throughout this document, "the Museum" and "the Corporation" are used interchangeably to refer to the corporate entity.

1.2. Guidelines

Crown corporations are expected to align with the federal Greening Government Strategy or adopt an equivalent set of commitments in each significant area of their operations, including the commitment to net-zero emissions by 2050 and to be climate resilient.

Crown corporations are also required to integrate environmental reporting into their annual corporate disclosures, aligning with the Task Force on Climate-related Financial Disclosures (TCFD) framework. Crown corporations with assets under \$1 billion are expected to begin reporting in the 2024 calendar year.

To align with the fiscal year, the Museum's Environmental Report covers the period between April 1st, 2024, and March 31st, 2025.

2. Governance

2.1. Oversight

Environmental oversight at the Museum is conducted by the Board of Trustees through its Finance, Audit and Risk Management Committee. The Museum provides at least one annual update on key environmental issues to the Trustees. In 2024–2025, this update included the assessment of the Museum's greenhouse gas (GHG) emissions, presentation of material environmental risks, and recommendations for reducing emissions and aligning with the Greening Government Strategy.

2.2. Management

The President and Chief Executive Officer, supported by the Senior Leadership Team, is accountable for the Corporation's environmental performance. The day-to-day management of environmental risks and opportunities is guided by the Museum's Environmental Sustainability Policy, which provides directives for integrating environmental considerations into key operational areas.

To strengthen coordination of key environmental initiatives, the Museum established the Climate Action, Reporting and Engagement Working Group (CARE), which reports to the Senior Leadership Standing Committee on Strategy and Risk Management. Co-chaired by the Chief Strategy Officer and the Chief Financial Officer, CARE unites experts from various areas of Museum operations to promote environmental sustainability and climate resilience. By leveraging shared expertise, CARE supports the planning and oversight of critical environmental initiatives, ensuring alignment with the Museum's strategic priorities.

Figure 1 provides an overview of the Museum's governance structure for the oversight and management of environmental risks and opportunities.

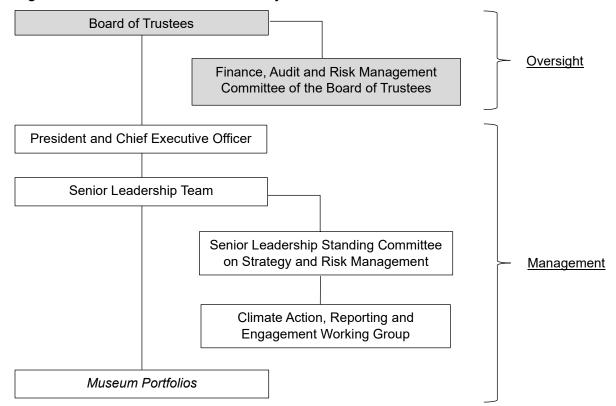


Figure 1: Environmental Sustainability Governance

3. Strategy

3.1. Impact of Environmental Issues on Strategy and Planning

The Museum buildings incorporate important elements of sustainable design. Both facilities use geothermal energy from the Ottawa River as a primary source of cooling. Additionally, the Canadian War Museum uses filtered river water for toilet flushing, reducing municipal water use, and features a 10,684-square-metre green roof planted with native species.

The Museum's activities are guided by five strategic directions, established by the Board of Trustees in 2022–2023, including the objective to "Build organizational resilience through sustainable practices." In alignment with this strategic direction, the Museum's activities in 2024–2025 included measuring its carbon footprint; conducting a detailed evaluation of environmental risks and opportunities; establishing a governance structure for overseeing and managing environmental issues; and adopting the Environmental Sustainability Policy. The Museum also started the process of developing a three-year Environmental Action Plan, aiming for reduction in GHG emissions and alignment with the Greening Government Strategy. This action plan is expected to be launched in 2025–2026.

The Museum began updating its vehicle fleet in alignment with the Greening Government Strategy target that all new light-duty fleet vehicle purchases be zero-emission. In 2024–2025, the Museum retired one internal combustion vehicle and added an electric vehicle to its fleet. The Museum also installed eight electric vehicle charging stations and increased public bicycle parking to 83 spots across both locations, encouraging the use of sustainable transportation by visitors and employees.

In 2024–2025, the Museum updated its exhibition planning process. All new exhibition proposals are now reviewed for alignment with the Environmental Sustainability Policy and assessed for their potential to promote environmental sustainability.

3.2. Environmental Risks and Opportunities

In 2024–2025, the Museum conducted a comprehensive qualitative assessment of its environmental risks and opportunities. This assessment included physical risks, related to the physical impacts of environmental events, and transition risks, related to the transition to a lower-carbon economy. The materiality of environmental risks was assessed based on their likelihood and impact level. The materiality of environmental opportunities was assessed by their ease of implementation and impact level. Risks and opportunities were then categorized by time horizon as short-term (within one year), medium-term (within one to five years), or long-term (beyond five years).

Tables 1 and 2 summarize the most significant environmental risks and opportunities, respectively.

Table 1: I	wattiai	Environmental	INIONO

Risk	Statement	Horizon
a) Physical risks		
Flooding	Heavy rainfall, rising water levels in the Ottawa River and infrastructure constraints can lead to flooding, causing damage to buildings and collections.	Medium-term
Severe weather events	Tornadoes, extreme heat and humidity levels can cause physical damage to buildings, equipment and collections.	Medium-term

b) Transition risks			
Regulatory changes	New laws and regulations aimed at reducing GHG emissions and promoting sustainability can require significant changes in operations and infrastructure.	Short-term	
Market preferences	Changes in market preferences towards more sustainable practices and products can affect supplier relationships and visitor expectations.	Medium-term	

Table 2: Material Environmental Opportunities

Opportunity	Statement	Horizon
Community	Partnering with local organizations and	Medium-term
engagement	communities, including Indigenous partners, to	
	address climate change can foster stronger	
	community relationships, support reconciliation and	
	enhance visitor engagement.	
Sustainable	Implementing sustainable practices, such as	Long-term
practices	conducting energy audits, upgrading to energy-	
	efficiency HVAC systems and adopting a zero-	
	waste program, can reduce the Museum's carbon	
D 11	footprint and operational costs.	
Renewable	Investing in renewable energy sources by installing	Long-term
energy	solar panels or securing renewable energy	
	contracts can reduce the Museum's reliance on	
	fossil fuels and lower energy costs.	
Environmental	Developing programs and exhibitions focused on	Medium-term
programming	climate change and environmental sustainability	
	can increase public awareness and engagement.	

3.3. Climate Scenario Analysis

3.3.1. Pathways

Recognizing the inherent uncertainties associated with climate change and its transitions, the Museum conducted a qualitative scenario analysis to assess how environmental risks may evolve under different future conditions. Two scenarios were evaluated: the Parisaligned pathway and the high-emissions pathway.

The Paris-aligned pathway represents a scenario where global temperature rise is limited to 2°C through strong international climate action and steep emissions reductions. In this scenario, there is a rapid acceleration in the adoption of renewable energy and low-carbon technologies, along with significant behavioural changes towards decarbonization. This pathway represents the best-case scenario.

The high-emissions pathway describes a scenario where limited global climate action leads to a temperature increase of more than 4°C, causing widespread climate disruption. This scenario is characterized by higher risk of flooding and severe weather events,

affecting the Museum, as well as less predictable transition risks. This pathway represents the worst-case scenario.

Table 3 summarizes the evolution of environmental risks at the Museum under these two pathways.

Table 3: Environmental Risks Under Climate Scenarios

Risk	Pathway		
	Paris-aligned (<2°C)	High emissions (>4°C)	
Flooding	Moderate flooding due to heavy rainfall and moderate sea level rise (~0.5 metres by 2100). Increased frequency of heavy rainfall events, particularly in spring, can overwhelm stormwater systems, causing localized urban flooding and riverine flooding along the Ottawa River.	Frequent and severe flooding due to a substantial increase in precipitation intensity, combined with sea level rise exceeding two (2) metres by 2100. High risks to properties along the Ottawa River, with riverine flooding risks rising significantly during spring thaws. High risk to the buildings and collections.	
Severe weather events	Occasional severe storms, including high winds and ice storms. Storms may damage roofs, windows and other infrastructure, while power outages could disrupt operations.	High frequency of tornadoes, storms and wildfires. Increased likelihood of freezing rain further exacerbates infrastructure risks and long-term closures of affected properties. Wildfires may degrade air quality, impacting indoor environments.	
Regulatory changes	Tightened environmental regulations require significant operational changes to meet carbon reduction targets. Carbon pricing increases sharply, alongside rising aggregate carbon costs.	Delayed or reactive policies focus on crisis management as climate impacts worsen, leading to sudden implementation of stricter and costly regulations.	
Market preferences	Increased expectations and pressure from stakeholders, including donors, visitors and government bodies, drive the need for the Museum to reduce emissions and source ecofriendly materials. Public demands transparent reporting on sustainability efforts and climate action initiatives.	Rapid and uneven shifts in market demand toward sustainable practices create reputational risks for organizations seen as lagging. Businesses face challenges and uncertainty adapting to fluctuating stakeholder expectations.	

3.3.2. Impacts on Financial Performance

Under the Paris-aligned pathway, the Museum may face minimal damage to its buildings, infrastructure and collections due to flooding and severe weather events. Some operational disruptions from storms are possible, leading to minor revenue losses. However, as global temperatures stabilize over time, these impacts are expected to decrease.

The high cost of carbon in this scenario may affect the Museum's supply chain, particularly by increasing costs of materials and transportation. Additionally, the Museum would require major financial investments in new, modernized equipment as it adopts energy-efficient technologies to meet evolving stakeholder expectations and regulatory requirements. In the long term, however, these investments are expected to result in energy savings and improved efficiency, reducing operational costs.

Under the high-emissions pathway, the Museum may face significant costs for frequent repairs and upgrades due to flooding and severe weather events. These recurring challenges are likely to strain financial resources, exacerbated by rising insurance premiums. The Museum also faces a high risk of damage and loss to its collection items.

In this scenario, visitor numbers are expected to be impacted by disruptions from severe weather events, further affecting revenue. Initially, the Museum may benefit from lower operational and capital costs due to minimal regulatory pressure and a delayed energy transition. However, the eventual introduction of strict regulations is likely to result in abrupt and costly compliance requirements. Investments in energy-efficient technologies and retrofits are also expected to be particularly expensive in this scenario, as the lack of a phased transition increases costs and complexity.

4. Risk Management

4.1. Integration of Environmental Risk Into Corporate Risk Management

Environmental risk is embedded within the Museum's overarching Risk Management Framework — a policy document that defines the key principles, roles and responsibilities guiding corporate risk management. The framework ensures that all corporate-level risks are identified, assessed, mitigated, monitored and reported using a consistent and structured process.

The Museum maintains a Risk Register that captures all corporate-level risks to which the Museum is exposed, including their drivers, potential impacts and control mechanisms. In addition, the Corporate Risk Profile provides a point-in-time snapshot of the Museum's prioritized risks and includes annual assessments of risk impact, likelihood and appetite, reviewed by the senior leadership team. Environmental risk is fully integrated into this process and is part of the Museum's prioritized risks. The Museum monitors and reports on significant risk management activities through regular updates to the Finance, Audit and Risk Management Committee of the Board of Trustees.

4.2. Assessing and Managing Environmental Risks

In 2024–2025, the Museum conducted an in-depth assessment of environmental risk, leading to the development of a register outlining specific physical and transition risks to which the Corporation is exposed. This process included a scan of the institutional environment and the formation of focus groups composed of Museum professionals whose areas of responsibility — such as facilities and exhibitions — are most affected by these risks. Through group discussions, a preliminary list of environmental risks was compiled and assessed based on their likelihood and potential impact. The senior leadership team reviewed and refined the list, resulting in the identification of material environmental risks, summarized in Table 1.

This risk assessment serves as the foundation for the Museum's Environmental Action Plan, expected to be launched in 2025–2026. The plan will outline concrete actions to reduce GHG emissions, align with the Greening Government Strategy, and address the Museum's broader environmental risks. The Museum intends to review and update the environmental risk register and the Environmental Action Plan every three years to ensure continued relevance and effectiveness.

5. Metrics and Targets

5.1. GHG Emissions

The Museum began tracking GHG emissions in 2024–2025. Table 4 summarizes corporate Scope 1, Scope 2 and Scope 3 emissions.

Table 4: GHG Emissions, 2024–2025

Source	tCO ₂ e	
Scope 1 and Scope 2	2,706	
Scope 1 – Direct emissions	2,483	а
Natural gas	2,041	
Diesel	19	
Mobile	1	
Fugitive	422	
Scope 2 – Electricity (location-based)	223	b
Scope 3 – Indirect emissions	6,066	С
Category 1 – Purchased goods and services	2,788	d
Category 2 – Capital goods	2,131	d
Category 3 – Fuel- and energy-related activities	228	
Category 5 – Waste generated in operations	142	
Non-hazardous operational waste	67	
Construction waste	75	d
Category 6 – Business travel	135	
Air travel	88	
Rail travel	1	
Car travel	21	d
Hotel stay	26	d

Category 7 – Employee commuting		е
Category 9 – Downstream transportation and distribution		
Postage and couriers	12	d, f
Exhibition transportation	110	d
Category 12 – End of life treatment of sold products		d
Category 15 – Investments		d

Notes:

- a. Scope 1 emissions are direct emissions from assets that are owned or controlled by the Museum. The emissions are based on the Museum's natural gas consumption, diesel purchase, vehicle mileage and refrigerant loss data.
- b. Scope 2 emissions are indirect emissions from purchased electricity. The Museum draws electricity from the Quebec grid for the Canadian Museum of History in Gatineau, and from the Ontario grid for the Canadian War Museum in Ottawa.
- c. Scope 3 emissions are other indirect emissions. The total Scope 3 emissions figure is an estimate and includes categories calculated using the spend-based method where activity data is limited or unavailable. Only material categories are reported. Materiality was assessed during the baseline estimation using a threshold of 25 tCO₂e (equivalent to 1% of direct emissions).
- d. This category includes emissions estimated using the spend-based method.
- e. Emissions are estimated based on the employee commute survey data.
- f. This category includes emissions data provided by suppliers.

5.2. Environmental Scorecard

In addition to tracking GHG emissions, the Museum has begun developing a set of other metrics related to its environmental risks and opportunities. Table 5 summarizes the Museum's Environmental Scorecard for 2024–2025. Work to refine and expand these metrics is ongoing.

Table 5: Environmental Scorecard, 2024–2025

Category	Unit	Value	
GHG Emissions			
Scope 1 and Scope 2	tCO ₂ e	2,706	
Scope 3	tCO ₂ e	6,066	
Utilities			
Electricity consumption	MWh	29,260	
% of electricity from renewable sources	%	86	а
Natural gas consumption	000 m ³	1,084	
% of natural gas from renewable sources	%	3	b
Municipal water usage	000 m ³	28	
Non-hazardous operational waste			
Landfill	tonne	63	С
Recycling	tonne	208	d
Compost	tonne	16	е
Diversion rate	%	78	
Suppliers			
% of Requests for Proposals (RFPs) with environmental			
criteria, by number	%	5	
% of RFPs with environmental criteria, by monetary value	%	<1	

% of RFPs awarded to local suppliers, by number	%	68 ^f
% of RFPs awarded to local suppliers, by monetary value	%	30
% of boutique sales sourced from local suppliers	%	8
Fleet		
% of the corporate fleet that are electric vehicles	%	25
Creative projects, programs and activities		
incorporating environmental themes		
Partnerships	#	1
Projects awarded by Digital Museums Canada	#	3
Learning and engagement	#	1
Temporary exhibitions	#	1 ^g
Travelling exhibitions	#	1 h
CINÉ+ films	#	15
Employees		
% of employees using sustainable transportation as		
primary modes of work commute	%	33 ⁱ
GHG emissions avoided due to hybrid mode of work	tCO ₂ e	208 ^j

Notes

- a. This metric is estimated using the electricity consumption data of the Canadian Museum of History and the Canadian War Museum, and the energy mix of the electricity grids in Quebec and Ontario.
- This metric is based on the contractual agreement of the Museum with a natural gas provider.
- c. This category includes non-hazardous operational waste sent to landfill.
- d. This category includes non-hazardous operational waste sent for recycling, including cardboard, glass, plastic, paper and metal.
- e. This category includes organic waste sent to a composting facility.
- f. Local suppliers are defined as suppliers based in the Ottawa-Gatineau Census Metropolitan Area.
- g. First Royals of Europe
- h. Kids Celebrate!
- i. Percentage of employees who commute more than 50% of their annual commuting distance using sustainable transportation modes, including walking, cycling, public transit or electric vehicles.
- j. This metric is estimated using the employee commute survey data.

5.3. Targets

As a Crown corporation, the Museum supports the targets outlined in the federal Greening Government Strategy, including the commitment to achieving net-zero emissions by 2050. The Museum is committed to advancing this ambitious goal, while recognizing the financial risks and budgetary constraints that may affect progress. Unlike federal departments and agencies, Crown corporations are not currently eligible for funding through the Greening Government Fund and must rely on internal resources to meet their environmental sustainability objectives. Despite these challenges, the Museum remains fully committed to doing its part in reducing emissions and contributing to a low-carbon, climate-resilient and clean growth economy.